

Pre-construction Water Quality Monitoring Report

Event 4 2022

October 2022

Project Number: 22-013

Document verification

Project Title: Event 4 2022

Project Number: 22-013

Project File Name: 22-013 Water Quality Monitoring Field and Laboratory Report Event 4 Draft V1.0

Revision	Date	Prepared by	Reviewed by	Approved by
Draft V1.0	19/10/2022	N. Smith	W. Weir	W. Weir
Final V1.0	21/10/2022	N. Smith	W. Weir	W. Weir

NGH Pty Ltd is committed to environmentally sustainable practices, including fostering a digital culture and minimising printing. Where printing is unavoidable, NGH prints on 100% recycled paper.

W. www.nghconsulting.com.au

BEGA - ACT & SOUTH EAST NSW

Suite 11, 89-91 Auckland Street (PO Box 470) Bega NSW 2550 T. (02) 6492 8333

BRISBANE

T3, Level 7, 348 Edward Street Brisbane QLD 4000 T. (07) 3129 7633

CANBERRA - NSW SE & ACT

Unit 8, 27 Yallourn Street (PO Box 62) Fyshwick ACT 2609 T. (02) 6280 5053

GOLD COAST

2B 34 Tallebudgera Creek Road Burleigh Heads QLD 4220 (PO Box 424 West Burleigh QLD 4219) T. (07) 3129 7633 E. ngh@nghconsulting.com.au

NEWCASTLE - HUNTER & NORTH COAST

Level 1, 31-33 Beaumont Street Hamilton NSW 2303 T. (02) 4929 2301

SYDNEY REGION

Unit 17, 21 Mary Street Surry Hills NSW 2010 **T.** (02) 8202 8333

WAGGA WAGGA - RIVERINA & WESTERN NSW

35 Kincaid Street (PO Box 5464) Wagga Wagga NSW 2650 T. (O2) 6971 9696

WODONGA

Unit 2, 83 Hume Street (PO Box 506) Wodonga VIC 3690 T. (02) 6067 2533

NSW • ACT • QLD • VIC

Table of contents

1.	Introdu	ıction	2
2.	Progra	m and methodology	2
3.	Monito	ring event observations and results	4
3.1.	Event 3	3	4
	3.1.1.	Results	5
	3.1.2.	Quality Assurance / Quality Control	10
4.	Conclu	ısion	11
5.	Refere	nces	12
Fig	ures		
Figur	e 2-1 W	QM locations	3
Figur	e 3-1 Lid	ck Hole Gully (LHG-IS)	5
Figur	e 3-2 Sh	neep Station Creek (SSC-IS)	5
Figur	e 3-3 Te	emperature	6
Figur	e 3-4 Di	ssolved oxygen (DO%)	7
Figur	e 3-5 Di	ssolved Oxygen (ppm)	7
Figur	e 3-6 Sp	pecific Conductance (SPC μS/cm)	8
Figur	e 3-7 Co	onductivity (µS/cm)	8
Figur	e 3-8 To	otal Suspended Solids	9
Figur	e 3-9 Po	otential of Hydrogen (pH)	9
Figur	e 3-10 O	xygen Redox Potential (ORP)	10
Tab	les		
Table	: 3-1 Re	sults above the DGV for Upland Rivers with 99% species protection level	6
App	pendic	ces	
Appe	ndix A E	vent Data Table	A-I
Appe	ndix B O	bservations and Field Data	B-I
Appe	ndix C L	aboratory Certificates	C-I
Appe	ndix D R	PD Table	D-I
Appe	ndix E C	alibration Certificates	E-I

1. Introduction

In 2020 Snowy Hydro Limited (Snowy Hydro) obtained approval (application number SSI 9208 and EPBC 2018/8322) to expand the existing Snowy Mountains Hydro-electric Scheme (Snowy Scheme), by linking the existing Tantangara and Talbingo reservoirs through a series of underground tunnels and constructing a new underground hydro-electric power station (referred to as 'Snowy 2.0').

To connect Snowy 2.0 to the National Energy Market (NEM), a new transmission connection is required. NSW Electricity Networks Operations Pty Ltd as a trustee for NSW Electricity Operations Trust (known as TransGrid and the Proponent) will construct a substation and overhead transmission lines (the Project) to facilitate the connection of Snowy 2.0 to the existing electrical transmission network. The Project location is approximately 27 kilometres (km) east of Tumbarumba, New South Wales (NSW). UGL has been engaged on behalf of the Proponent to undertake the Project.

The purpose of the pre-construction water quality monitoring is to address the requirements of the Environmental Impact Statement (EIS) (Jacobs 2020) that was prepared by the Proponent under Part 5, Division 5.2 of the NSW *Environmental Planning and Assessment Act 1979* to assess the environmental impacts of the proposed Project. Subsequently, an Amendment Report (TransGrid 2021b) was submitted with the Response to Submissions (TransGrid 2021a) to the Department of Planning and Environment (DPE) with updated mitigation measures for the Project.

The objectives of the pre-construction surface water quality monitoring is to collect baseline data prior to Project construction works. Baseline data will be compared to ANZG (2018) guidelines to characterise the existing surface water quality. The data will be compared to the water quality objectives (WQO) for the Project area.

2. Program and methodology

The Pre-construction Water Quality Monitoring Program and Methodology (the Program) (NGH 2022) has been prepared to detail the WQOs for the Project, the location of the monitoring locations and the methodology for water sampling.

The Project area within Kosciuszko National Park is an area of high conservation value. Therefore, the water quality objectives for physical and chemical stressors includes **no change beyond natural variability** (ANZG 2018). The Default Guideline Values (DGV) for Upland Rivers has been provided for physical and chemical stressors and is detailed in the Program (NGH 2022).

The location of the sampling points in relation to the Project footprint is provided in Figure 2-1.

Figure 2-1 WQM locations

NGH Pty Ltd | 22-013 - Final V1.0

3. Monitoring event observations and results

Water quality results for each site and are provided in Appendix A. Results are highlighted where they exceed the default guideline value (refer to the Program (NGH 2022)). Table 3-1 identifies exceedances of the DGVs for metals, cyanide and nutrients. Physico-chemical results have been provided in Figure 3-3 to Figure 3-10. Field data and observations are provided in Appendix B.

3.1. Event 4

NGH conducted the first, second and third rounds of sampling in March (Event 1), April (Event 2), and May and early June (Event 3) 2022. Reports for each event were prepared following receival of the laboratory results (NGH 2022a; 2022b; 2022c). The results of Event 1, Event 2 and Event 3 have been compared in this report to the results of Event 4.

NGH Environmental Scientist, Nicola Smith, conducted monitoring event UGL representative/s on 28 and 29 June 2022. The weather was mild with sun and a slight breeze. Data from the Cabramurra SMHEA automatic weather station on 28 June 2022 (Station ID 072161) indicates that it was a calm day with wind speed dropping from 6km/h in the morning to a calm afternoon. Temperatures on the day started with a low of -2.4°C and a high of 7.3°C. Data from the Tumbarumba weather station for 29 June 2022 (Station ID 072043) indicates that the day was calm with a low of -3.5°C and a high of 11.0°C.

Generally, water flow was observed to be slightly turbid with no hydrocarbon sheen, and no odours were present. The banks of each channel were well vegetated with the vegetation matrix weedier in some locations. Evidence of bank erosion from hooved animals was observed at the New Zealand Gully site, the Yorkers Creek impact site and Yorkers Creek reference site. Flow was observed to have increased in all channels as a result of the wet weather or snow melt compared to Event 1. However, turbidity was observed to have decreased compared to Event 3 (Figure 3-1 to Figure 3-2).

Figure 3-1 Lick Hole Gully (LHG-IS)

Figure 3-2 Sheep Station Creek (SSC-IS)

3.1.1. Results

The results indicate that the water quality in the locations where samples were taken generally meets the DGVs for Upland Rivers with a 99% species protection level for toxicants. Locations where a physical or chemical stressor was above the DGV are provided in Table 3-1. Both CG-IS and LHG-IS display elevated values for total dissolved solids compared to the other sampling locations. Total suspended solids at sites YK-IS and YK-RS were above the 0.2mg/L assigned DGV, refer to Appendix A.

Water temperatures ranged from 3.5 – 9.9 degrees Celsius with LHG-IS at 9.9 degrees Celsius and YK-RS at 3.5 degrees Celsius.

Many of the results are recorded as below (<) the limit of detection. To enable calculation of the statistics, the *Limit of Detection Divided by Two (LOD/2) Method* (Cohen and Ryan 1989) has been applied. This data is provided in Appendix A.

Any exceedances of the DGV for metals, nutrients and cyanide are presented in Table 3-1.

Table 3-1 Results above the DGV for Upland Rivers with 99% species protection level

Site identification	Analyte	DGV	Result	Comment
YK-IS (D/S)	Total Phosphorus (TP) mg/L	0.02	0.03mg/L	Located within Bago State Forest and adjacent to an unsealed track. Unknown activities within the State Forest upstream. Sample taken upstream of culvert. Sample only slightly elevated against the DGV by 0.01mg/L

The following time series, Figure 3-3 to Figure 3-10, display physico-chemical water quality through time for monitoring Event 1 (March), Event 2 (April), Event 3 (May/June) and Event 4 (June). Where a DGV is available, these values are shown on the graph and have been included for dissolved oxygen (%), conductivity, pH and turbidity.

Temperature is lowest at the Yorkers Creek sites YK-RS and YK-IS (D/S). The lower temperatures are a reflection of the cooler winter air temperatures and likelihood of snow melt (Figure 3-3).

Figure 3-3 Temperature

DO (%) measurements at six sites are below the DGV minimum value with the lowest value of 24.6% at YR1-IS. This value is down from a high of 92.2% for Event 1, refer to Figure 3-4. DO (%) for YK-IS (D/S), NZG-IS, YK-RS and YK-IS are within the DGV range.

Figure 3-4 Dissolved oxygen (DO%)

The DO (ppm) for all sites exceeds the values of Event 1 to Event 3. The highest value recorded for Event 4 is YR2-IS with 19.18 ppm, refer to Figure 3-5.

Figure 3-5 Dissolved Oxygen (ppm)

Specific conductance at most sites for Event 4 have decreased compared to previous events. The pattern of specific conductance between sites remains similar with CG-IS having the highest specific conductance, recorded as 321.3µS/cm for Event 4, refer to Figure 3-6.

Figure 3-6 Specific Conductance (SPC μS/cm)

Conductivity at CG-IS for Event 4, compared to Event 3, has increased from 315µS/cm to 349µS/cm, refer to Figure 3-7. This is considered likely a result of the geology upstream. The pattern between sites is mostly reflective of the pattern for specific conductance. This was the first event where conductivity could be measured for Lick Hole Gully, which returned the highest value for Event 4 with 366.9µS/cm.

Figure 3-7 Conductivity (µS/cm)

Turbidity is missing from the suite of sampling results for Event 4. The equipment provided was missing the turbidity probe.

The results of monitoring for total suspended solids are some of the lowest of all events. The highest value for Event 4 was at YK-IS of 4mg/L compared to a value of 36mg/L during Event 3. For Event 3, the highest value was recorded at YK-IS (D/S) of 104mg/L, which returned a value of <0.2mg/L, refer to Figure 3-8.

Figure 3-8 Total Suspended Solids

The pH for WC-RS and WC-IS have decreased from Event 3 to Event 4 from 7.64 to 5.8 pH units for WC-RS and 7.64 to 5.73 pH units for WC-IS. Overall, all sites showed reduced pH units for Event 4 than previous events, refer to Figure 3-9.

Figure 3-9 Potential of Hydrogen (pH)

The values for the oxygen redox potential during Event 4 have decreased from Event 3 except for WC-RS and WC-IS, which are displaying elevated values of 128.4mV and 115.9mV respectively. The values at all other sites are lower than the measured oxygen redox potential from any of the previous events, refer to Figure 3-10.

Figure 3-10 Oxygen Redox Potential (ORP)

3.1.2. Quality Assurance / Quality Control

A Quality Assurance and Quality Control (QA/QC) program was undertaken as part of this investigation including:

- A field duplicate sample, at a rate of one per 20 samples, was taken (DUP01) from the WQM site WC-RS on 28 June 2022. DUP01 was analysed for metals and metalloids. The duplicate sample has been compared against the WC-RS sample by Relative Percentage Difference (RPD) and has returned within an acceptable range or less than 30% for inorganic or less than 5 times the laboratory limit of reporting (LOR). The RPD was 0%.
- A water blank was supplied by the laboratory. The water blank sample was analysed for metals and metalloids. There were no exceedances of the sample results above the LORs.

NGH consider the QA/QC program to have been effective and the data reliable and representative to achieve the objectives of the investigation.

Refer to Appendix C for the laboratory analysis certificate, Appendix D for the RPD Table and Appendix E for the calibration certificates.

4. Conclusion

The results show a continuation of low water temperatures, especially for the channels at higher altitude (Bago State Forest – YK sites and NZG). Most results for Event 4 were lower with a similar pattern between sites as the previous three events except for dissolved oxygen. Dissolved oxygen showed an increase across sites except for WC-RS and WC-IS.

Laboratory results for Event 4 were generally consistent with the results of the previous monitoring events with the majority of analytes reported below the Limit of Reporting. The only exceedance in the laboratory results beyond total suspended solids was for total phosphorus at YK-IS (D/S) with a result of 0.03mg/L, which is above the DGV of 0.02mg/L. All results and statistics are provided in Appendix A.

5. References

Jacobs Pty Ltd. 2020. Snowy 2.0 Transmission Connection Project EIS.

NGH Pty Ltd. 2022. Pre-construction Water Quality Monitoring Program and Methodology.

NGH Pty Ltd. 2022a. Pre-construction Water Quality Monitoring Report: Event 1 April 2022.

NGH Pty Ltd. 2022b. Pre-construction Water Quality Monitoring Report: Event 2 April 2022.

NGH Pty Ltd. 2022c. Pre-construction Water Quality Monitoring Report: Event 3 May and June 2022.

TransGrid. 2021a. Snowy 2.0 Transmission Connection Project Submissions Report.

TransGrid. 2021b. Snowy 2.0 Transmission Connection Project Amendment Report.

APPENDIX A EVENT DATA TABLE

		Sheen/oil/	Temp. ()	Dissolved Oxygen (DC	DO (ppm)	Specific EC (SPC	EC (uS/cm)	pH Redax (m)) Turbidity (NTU)	Al (mg/L)	As (mg/L)	Cd (mg/L)	Cr (mg/L)	Cu (mg/L)	Cyanide (mg/L)	Fe (mg/L)	Pb (mg/L)	Mn (mg/L)	Hg (mg/L)	Ni (mg/L)	TN (mg/L)	TP (mg/L)	Ag (mg/L)	TDS mg/L	TSS (mg/L)	Zn (mg/L)
	nstruction WQM Guideline Value)	grease No		%) 90-110		uS/cm)	30-350	6.5-8	2-25	0.027	0.0008	0.00006	0.00001	0.001	0.004	0.3	0.001	1.2	0.00006	0.008	0.25	0.02	0.00002			0.0024
WC-RS	Event 1 Event 2	No In but on sedimer	14.2 12.4	90.5	9.28 7.84	126.8		7.85 61.2 7.95 159.4	0.37	0.01	0.00015	0.00001	0.000005	0.0001	0.001	0.03	0.0005	0.011	0.000015	0.0005	3	0.005	0.00001	12	1	0.001
	Event 3	No No	9.2	61.3	7.05	151	36	7.64 116.3	36.96	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	50	52	0.001
	Event 4 Min	No	7.3 7.30	75.1 61.30	12.78 7.05	128.9333333 109.00		5.8 128.4 5.80 61.20	0.37	0.015	0.00015	0.0001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	19 1.00	0.25	0.001
	Max		14.20	90.50	12.78	151.00	100.70	7.95 159.40	36.96	0.02	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.01	0.00	0.00	3.00	0.01	0.00	50.00	52.00	0.00
	Mean Count		10.78 4.00	75.10 4.00	9.24 4.00	128.93 4.00		7.31 116.33 4.00 4.00	12.94 3.00	4.00	4.00	4.00	4.00	4.00	0.00 4.00	0.01 4.00	4.00	4.00	0.00 4.00	0.00 4.00	0.83 4.00	0.01 4.00	0.00 4.00	20.50 4.00	13.38 4.00	0.00 4.00
	St. Dev		3.11	11.97	2.54	17.21	33.26	1.01 40.99	20.81	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	1.45	0.00	0.00	21.02	25.75	0.00
WC-IS	Event 1 Event 2	No No	14.3 12.5	90.6	9.28 7.44	126.7 109	100.8 83.3	8.14 76 7.84 146.8	0.32 1.39	0.01	0.00015	0.00001	0.000005	0.0001	0.001	0.03 0.005	0.0005	0.011	0.000015	0.0005	0.1	0.005	0.00001	80 63	0.25	0.001
	Event 3	No	9.3	61.2	7.03	48	33	7.64 145.8	40.77	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.02	0.00001	41	42	0.001
	Event 4 Min	No	7.4 7.40	43.7 43.70	12.55 7.03	52.3 48.00		5.73 115.9 5.73 76.00	0.32	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.00S 0.01	0.0005	0.0005	0.000015	0.0005	0.10	0.02	0.00001	27 27.00	0.25	0.001
	Max		14.30	90.60	12.55	126.70	100.80	8.14 146.80	40.77	0.02	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.01	0.00	0.00	0.80	0.02	0.00	80.00	42.00	0.00
	Count		4.00	4.00	4.00	4.00	4.00	7.34 121.13 4.00 4.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
	St. Dev Event 1		3.11	19.50	2.51 9.43	39.79	34.28	1.09 33.32	23.05	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.35	0.01	0.00	23.44	20.46	0.00
CG-IS	Event 1 Event 2	No No	14.1	91.8 71.6	9.43 7.48	536 517	423.6	7.73 161.4	1.36	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.002	0.000015	0.0005	0.1	0.005	0.00001	293	0.25	0.001
	Event 3 Event 4	No	9.6	62.1 44.57	7.07	447 321 3		8.22 159.2 6.27 61.1	65.1	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	270	40	0.001
	Min	NO	8.60	44.57	7.07	321.30	315.00	6.37 61.10	1.36	0.01	0.00	0.00	0.00	0.00	0.00	0.005	0.00	0.00	0.000015	0.00	0.10	0.01	0.000	266.00	0.25	0.00
	Max Mean		14.10	91.80	12.06	536.00	423.60	8.22 161.40	65.10	0.02	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.05	0.00	317.00	40.00	0.00
	Count		4.00	4.00	4.00	455.33		4.00 4.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
YR1-RS	St. Dev Event 1	No	2.71 14.9	19.68	2.28 9.31	97.20 110.7	49.31 89.3	0.87 49.59 8.35 78.3	35.42 6.94	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	23.56	19.75	0.00
181-83	Event 2	No No	14.9	73.8	7.83	104	79.2	8.35 /8.3 8.15 128.8	1.85	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.003	0.000015	0.0005	0.1	0.005	0.00001	50	0.25	0.001
-	Event 3 Event 4	No sample	6.5	24.6	13.05	34.7	36.9	6.84 56.3		0.015	0.00015	0.00001	200000	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	22	0.25	0.001
	Min	AU	6.50	24.60	7.83	34.70	36.90	6.84 56.30	1.85	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.01	0.00	33.00	0.25	0.00
	Max Mean		14.90 11.37	92.20 63.53	13.05	110.70 83.13		8.35 128.80 7.78 87.80	6.94 4.40	0.03	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.10	0.01	0.00	69.00 50.67	1.00 0.50	0.00
	Count		3.00	3.00	3.00	3.00	3.00	3.00 3.00	2.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
LHG-IS	St. Dev Event 1	No	4.36	34.95	2.69	42.08	27.80	0.82 37.17	3.60	0.01	0.00	0.00	0.00	0.00	0.00	0.03 0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	18.01 348	0.43	0.00
	Event 2	No								0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.002	0.000015	0.0005	0.1	0.005	0.00001	353	2	0.001
-	Event 3 Event 4	No sample No	9.9	0	10.71	0	366.9	6.93 76.3		0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.01	0.00001	295	0.25	0.001
	Min		9.90	0.00	10.71	0.00	366.90	6.93 76.30	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.01	0.00	295.00	0.25	0.00
	Max Mean		9.90 9.90	0.00	10.71	0.00		6.93 76.30 6.93 76.30	0.00 #DIV/01	0.02	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	2.00 0.73	0.01	0.00	353.00 332.00	2.00 1.08	0.00
	Count		1.00	1.00	1.00	1.00	1.00	1.00 1.00	0.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
YR2-RS	St. Dev Event 1	No	#DIV/0! 15.3	#DIV/D! 93.1	#DIV/01 9.32	#DIV/0! 109.4	#DIV/01 #	DIV/0! #DIV/0! 8.38 76.5	#DIV/01 3.28	0.00	0.00	0.00	0.00	0.00	0.001	0.01	0.0005	0.00	0.00 0.000015	0.000	1.10 0.1	0.00	0.000	32.14 74	0.88	0.00
	Event 2	No	13	73.6	7.74	101		8.11 145.4	2.29	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.002	0.000015	0.0005	0.1	0.005	0.00001	39	0.25	0.001
	Event 4	No sample No	6.5	83.35	19.18	105.2	38.4	7.24 64.5		0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	38	0.25	0.001
	Min		6.50	73.60	7.74	101.00	38.40	7.24 64.50	2.29	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.01	0.00	38.00	0.25	0.00
	Max Mean		15.30 11.60	93.10 83.35	19.18	109.40 105.20	89.20 68.63	8.38 145.40 7.91 95.47	3.28 2.79	0.02	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00	0.00	0.00	0.10	0.01	0.00	74.00 50.33	2.00 0.83	0.00
	Count St. Dev		3.00 4.56	3.00 9.75	3.00	3.00 4.20		3.00 3.00	2.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00 0.03	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
SSC-IS	Event 1	No flow	4.56	9.75	6.20	4.20	2b./4	0.60 43.66	0.70	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.50	1.01	0.00
	Event 2	No flow					_																			
	Event 4	No No	10.4 8.6	61.4	12.09	108	96.9	7.19 53.1	42.72	0.00015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	84 69	0.25	0.001
	Min		8.60	61.40	6.87	108.00	78.00	7.19 53.10	42.72	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.01	0.00	69.00	0.25	0.00
	Mean		9.50	61.40	9.48	108.00	87.45	7.35 102.65	42.72	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.01	0.00	76.50	4.13	0.00
	Count St. Dev		2.00 1.27	2.00	2.00 3.69	2.00		2.00 2.00 0.22 70.07	1.00 #DIV/01	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00 5.48	2.00
TR-RS	Event 1	No	12.9	94.6	9.99	21.1	16.2	7.83 80.5	0.07	0.01	0.00015	0.00001	0.000005	0.0001	0.001	0.03	0.0005	0.003	0.000015	0.0005	0.1	0.005	0.00001	43	1	0.001
-	Event 2 Event 3	No No Sample	12	76	8.2	20	15	7.87 153	1.02	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.001	0.000015	0.0005	1.1	0.005	0.00001	12	0.25	0.001
	Event 4	No	6.1	85.3	14.78	20.55	12.3	7.03 67.6		0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.01	0.00001	7	0.25	0.001
	Min Max		6.10 12.90	76.00 94.60	8.20 14.78	20.00		7.03 67.60 7.87 153.00	0.07 1.02	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10 1.10	0.01	0.00	7.00 43.00	0.25 1.00	0.00
	Mean		10.33	85.30	10.99	20.55	14.50	7.58 100.37	0.55	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.43	0.01	0.00	20.67	0.50	0.00
	Count St. Dev		3.00 3.69	3.00 9.30	3.00 3.40	3.00 0.55		3.00 3.00 0.47 46.04	2.00 0.67	0.00	3.00 0.00	3.00 0.00	3.00 0.00	0.00	3.00 0.00	3.00 0.01	3.00 0.00	3.00 0.00	3.00 0.00	3.00 0.00	3.00 0.58	3.00 0.00	3.00 0.00	3.00 19.50	3.00 0.43	3.00 0.00
YK-IS (D/S)	Event 1 Event 2	No.	13.2	91.1 65.9	9.56	36.9	28.6	7.55 101.4	6.42	0.26	0.00015	0.00001	0.000005	0.0001	0.001	0.39	0.0005	0.006	0.000015	0.0005	2	0.005	0.00001	22	14	0.001
	Event 2 Event 3	No.	10.1 4.7	65.9 84.4	7.42 10.85	36	22	6.56 98.2	9.1 59.63	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.15 0.005	0.0005	0.001 0.0005	0.000015	0.0005	0.1	0.17	0.00001	44	14 104	0.001
	Event 4 Min	No	3.5 3.50	96.4 65.90	12.79 7.42	30.8 29.00		6.87 64 6.56 64.00	6.42	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.00S 0.01	0.0005	0.0005	0.000015	0.0005	0.1	0.03	0.00001	18	0.25	0.001
	Max		13.20	96.40	12.79	36.90	28.60	8.39 157.80	59.63	0.02	0.00	0.00	0.00	0.00	0.00	0.39	0.00	0.01	0.00	0.00	2.00	0.17	0.00	44.00	104.00	0.00
	Mean Count		7.88 4.00	84.45 4.00	10.16 4.00	33.18 4.00	22.33 4.00	7.34 105.35 4.00 4.00	25.05 3.00	0.08 4.00	0.00 4.00	0.00 4.00	0.00 4.00	0.00 4.00	0.00 4.00	0.14 4.00	0.00 4.00	0.00 4.00	0.00 4.00	0.00 4.00	0.60 4.00	0.05 4.00	0.00 4.00	21.25 4.00	29.81 4.00	0.00 4.00
	St. Dev		4.57	13.31	2.26	3.87		0.81 38.85	29.98	0.12	0.00	0.00	0.00	0.00	0.00	0.18	0.00	0.00	0.00	0.00	0.93	0.08	0.00	17.69	49.86	0.00
NZG-IS	Event 1 Event 2	No No	13.4 10.2	91.3 70.2	9.54 7.89	53.8 50	41.8 36	7.39 108.1 7.69 148	5.14 3.67	0.14	0.00015 0.00015	0.00001	0.000005 0.000005	0.0001	0.001	0.21 0.005	0.0005	0.005	0.000015 0.000015	0.0005	0.1	0.005	0.00001	43 52	0.25	0.001
	Event 3	No	5.2	80.8	10.27	39		6.95 125.4	51.33	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	48	53	0.001
	Event 4 Min	No	4.7 4.70	95.4 70.20	12.28 7.89	39.8 39.00		6.67 54.6 6.67 54.60	3.67	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005 0.01	0.0005	0.0005	0.000015	0.0005	0.10	0.03	0.00001	22 22.00	0.25	0.001
	Max Mean		13.40 8.38	95.40 84.43	12.28	53.80 45.65		7.69 148.00	51.33 20.05	0.14	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.01	0.00	0.00	3.00 0.83	0.03	0.00	52.00 41.25	53.00	0.00
	Count		4.00	4.00	10.00	45.65	4.00	7.18 109.03 4.00 4.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	0.01 4.00	0.00 4.00	41.25	13.63 4.00	0.00 4.00
WV IF	St. Dev	No.	4.17	11.30 94	1.82	7.39	8.81	0.45 39.79	27.10 10.66	0.06	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00	0.00	1.45	0.01	0.00	13.35	26.25 8	0.00
TK-IS	Event 1 Event 2	No No	14.2 10.4	69.7	9.63 7.8	32.9 30	21.4	7.58 172.4 7.65 139.3	10.66 9.44	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.2	0.0005	0.011	0.000015	0.0005	0.1	0.005	0.00001	24	7	0.001
-	Event 3	No No	4.3	81.5 93.8	10.6 12.23	31 27.6	31 16.6	6.9 121.6 6.7 48.1	32.77	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	46	36	0.001
	Event 4 Min	AU	4.20	69.70	7.80	27.60		6.70 48.10	9.44	0.02	0.00	0.00	0.00	0.00	0.001	0.01	0.00	0.0005	0.000	0.005	0.10	0.005	0.00	14.00	4.00	0.00
	Max Mean		14.20 8.28	94.00 84.75	12.23 10.07	32.90 30.38	31.00 23.78	7.65 172.40 7.21 120.35	32,77 17,62	0.41	0.00	0.00	0.00	0.00	0.00	0.49 0.18	0.00	0.01	0.00	0.00	2.00	0.01	0.00	46.00 26.00	36.00 13.75	0.00
	Count		4.00	4.00	4.00	4.00	4.00	4.00 4.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
VV. PS	St. Dev Event 1	No	4.90 15.8	11.61 87.5	1.85 8.96	2.21 30.5		0.48 52.57 7.12 142	13.13	0.20	0.00	0.00	0.00	0.00	0.00	0.23	0.00	0.01	0.00	0.00	0.95	0.00	0.00	13.95	14.93	0.00
18-83	Event 2	No.	12.7	71.4	7.58	31	24	7.54 138.9	9.77	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.19	0.0005	0.002	0.000015	0.0005	0.1	0.005	0.00001	30	6	0.001
-	Event 3 Event 4	No No	3.4 3.9	82 95.3	10.91 12.53	31 26.9		6.73 128.8 6.58 44.2	20.28	0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.00S 0.00S	0.0005	0.0005	0.000015	0.0005	0.1	0.005	0.00001	40 15	3	0.001
	Min	.40	3.40	71.40	7.58	26.90		6.58 44.20	5.71	0.02	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.10	0.01	0.00	15.00	1.00	0.00
	Max Mean		15.80 8.95	95.30 84.05	12.53 10.00	31.00 29.85	25.10 20.80	7.54 142.00 6.99 113.48	20.28 11.92	0.35	0.00	0.00	0.00	0.00	0.00	0.45 0.16	0.00	0.01	0.00	0.00	0.10	0.01	0.00	40.00 26.25	6.00 2.75	0.00
	Count		4.00	4.00	4.00	4.00	4.00	4.00 4.00	3.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Values coloured blue of	St. Dev nd italicised are half the	Limit of reporting	6.25 a for statistical use (LOR/	10.04	2.17	1.98	4.42	0.43 46.53	7.52	0.17	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.09	2.36	0.00

APPENDIX B OBSERVATIONS AND FIELD DATA

28/6/22 - Sunny, slight breeze

22-013 Pre-c	onstruction WQM	Grease/oil/ Temperature Dissolved Dissolved Oxygen (%) Dissolved Oxygen (ppm) Specific Conductivity (uS/cm) PH Oxidation Reduction (NTU)
	Month	NO 7.3 - 12.78 - 35.3 5.8 128.4 -
WG-RS	Comment	Fast flarry, clear, more reservently now as abution as event?
	POPONICO GENERAL DE LA COMPANION DE LA COMPANI	
	Month	NO 7.4 - 12.55 - 35.0 5.73 N5.9 -
		No 7.4 - 12.55 - 35.0 5.73 115.9 - Fast flowy, as above - Stylly tubed.
WG-IS	Comment	
	Commence	
	appropries.	
	Month	No 8.6 - 12.86 - 349.0 6.37 61.1 -
		No 8.6 - 12.06 - 349.0 6.37 61.1 - fact flowy, clear, no Abrea terbretty, Aqualic plants moss, evosus.
ce.is		moss word.
	Comment	
	102 90 000000000000000000000000000000000	
	Month	10 6.5 - 13.05 - 36.9 6.84 56.3 -
		NO 6.5 - 13.05 - 36.9 6.84 56.3 - Slightly More troval visually den uracil, fast flowing.
	Protesta de la composición	
YR1-IS	Comment	
111	1	

Land.

(mg/v) chocheadles has s/cm. - m

	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	(18.),	Ola Les Pool	3 7 0 /	7/1
22-013 Pre-construction WQM	Grease/oil/ Temperature Dissolved Sheen (°C) Oxygen (%		Conductivity pH (uS/cm)	Oxidation Reduction Potential (mV)	Turbidity (NTU)
Month	NO 9.9 -	10.71 3/69-	10 366.9 6.93	76.3	
LHG-IS Comment	No 9.9 - No odow, more no weal about	he the a mehe	Mady		
Month	NO 6.5 -	13,18 38/4 -	₱ 38.4 7.24	645	NALONGO (A FIERDESS
YR2-IS Comment	Fast flowers, large rap	ds, no odouv, no	or clear.		- 1
Month	ND 8.6	12.09 96.9-	10 96.9 7,19	5311	
SSC-IS Comment	Plowy Water level Milky-russ to water	observed No ode	ouv		V MARKET
Month	NO 6.1 6	177.74	12.3 7.03	67.6	12200 05
TR-RS Comment	Clear, cold no e	olaur.	•		
Month	NO 3.5 .496	6.4 1a.79 30, 8-	18,2 6,87	640	##SSTERMONTS
AK IS (DIS)	Novas clear as p		7 + 2	TDS	
YK-IS (D/S) Comment	fact flowing, n	O OCKEULV		20.	longil
	-			₩ ggr wilder	W

no working oprovio Property 1 Mison votal Mes had

22-013 Pre-construction WQN	Grease/oil/ sheen	Temperature (°C)	Dissolved Oxygen (%)	Dissolved Oxygen (ppm)	Specific Conductivity (SPC uS/cm)	Conductivity (uS/cm)	рН	Oxidation Reduction Potential (mV)	Turbidity (NTU)
Month	1/0	4.7	95.4	12.28	39.8	<u> </u>	6.67	546	. Accession of the contract of
NZG-IS Comme	Clear,	Sanoly br	eal	dev.	horses				†D/s
Month			(00100/d) 93.8		976 / 1	<i>f</i> 2	6.70	48.1	26 Mg 11
	Milley	nes b	1	104. 2.5	77.0		6.70	1 40 11	ns
YK-IS Comme	nt no od	dour	halei	- 113/5	es - 11	nderco	= hoot	malis	18.20 4 000.
Month	1/0:	2.4	95.3	12.53	26.9	16.1	6.58	44.2	
YK-RS	Ericle		t porsi					<i>i</i> 2	TDS
Comme	t Cleau No a	ence ô; , fast <u>oaouv</u>	Alderi	J. J. D. S.		- wegge - Ingle			17.5 ngl

IX Add Metromaps to Qais.

Allow have project area-

determine which pts might need to be

semoved into impact rongs.

APPENDIX C LABORATORY CERTIFICATES

Charles Sturt University

CLIENT:	NGH Pty Ltd					60,000	201419-25/18	SHI (Care)	MANAGE PROPERTY AND ADDRESS OF THE PARTY AND A	MALI	Ü	KEUOIF	RED Con	npiete &	uck as	require	1	nyesenye eyyes	80000000
CONTACT:	Nicola Smith							1	Solids	چ چ	, As,				į				
ADDRESS:	35 Kincaid Street Wagga Wagga NSW 2650 ABN: 31 124 444 622						Phosphorus		Suspended So	Total Dissolved Solids	Dissolved Metats (AI,						,		
ELEPHONE:	0410 411		E-mail	E-mail nicola.s@nghconsulting.com.au			Pho	ide	Susp	Diss	lved								-
SAMPLE IDENTIFICATION	NATURE OF SAMPLE	DATE SAMPLED	TIME SAMPLED	CONTAINER TYPE	NUMBER OF CONTAINERS	Total Nitrogen	Total	Cyanide	Total	Total	Disso				}				
WC-RS	Water	28.622		Bottle	3	X	X	X	X	X	X								
WC-15	Waver	28.6-22		Bottle	3	X	X	X	X	X	X								
4R1-15	Marev	28.6.22		BOHLE	3_	X	X,	X	X	X	X								
12C-15	Water	28.6.22		BOHO	3	\times	X	\times	X	X	X								
LHG-15	Water	78.672		BOHLO	3	X	X	X	\times	X	X								
4R2-15	Water	28.6.22	<u>-</u>	BUHLL	3	\times	X	X	\times	X	×				<u> </u>	ļ			
SSC-IS	Water	18.6.22		Bottle	3	X	丛	X.	X	X	X				ļ	<u> </u>	ļ		
TR-RS	Mater	28.6.72		Botto	3	X	X	X	\times	X	X				ļ	ļ			
YK-15(DK)	Water	1962		BOHLO	3	X	X	X.	X	X	X					ļ			
11c-15	Water	29.6.22		Bottle	3	X	X	X	X	×	X			ļ		<u> </u>			
N2C1-15	Water	29.622		BUHLO	3	X	\times	\times	X	X	\times			-		-			
YV-RS	Water	19.6.22		BOHLO	3	\times	X	\times	×	\times	×					<u> </u>			
DUPOI	Water	18.6.22		Botto	3	ļ		ļ.,	ļ	<u> </u>	X	<u> </u>		_	<u> </u>	<u> </u>			
Water bloke	Water			Bate	3	X		X			\times						l		

497.55	NAME	SIGNATURE	ORGANISATION	DATE	TIME
RELINQUISHED BY:	cola Smith	A)	NGH Pay Ltd	19.6.22	15:31
Mode of Transport Include Consignment Note # if applicable Del	livery				
RECEIVED BY:	7. GLAZIO		E//-	296/12 3	3:38

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Wednesday, September 28, 2022

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 1 of 15

For all enquiries related to this report please quote document number: 2206-0100

<u>Facility:</u> <u>Order #</u> <u>Date Analysis Commenced</u>

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID. Date/Time sampl	<u>Test</u> e taken	Result	(units)	Method Reference	Limit of Reporting
22Jun-0255	WC-RS 28.06.22	· · · · · · · · · · · · · · · · · · ·				
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	< 0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	<0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Cyanide	< 0.002	mg/L	* APHA 4500-CN E	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1
		Phosphorus, Total	0.02	mg/L	LTM-W-030	0.01
		Silver (dissolved)	< 0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Total Dissolved Solids	19	mg/L	LTM-W-035	2
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D	0.2
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002

22Jun-0256 **WC-IS**

www.csu.edu.au

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Wednesday, September 28, 2022

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 2 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

 Sample Type
 Collected By
 Date Received

 Water
 N. Smith
 29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> e taken	Result	(units)	Method Reference	Limit of Reporting
22Jun-0256	WC-IS 28.06.22					
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	<0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Cyanide	<0.002	mg/L	* APHA 4500-CN E	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1
		Phosphorus, Total	0.04	mg/L	LTM-W-030	0.01
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Total Dissolved Solids	27	mg/L	LTM-W-035	2
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D	0.2
		Zinc (dissolved)	<0.002	mg/L	APHA 3030 B/3120 B	0.002

22Jun-0257 **YR1-IS**

www.csu.edu.au

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022

NATA Accredited Laboratory Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number: 2206-0100 **Page 3 of 15**

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # **Date Analysis Commenced**

29-June-2022

Sample Type Collected By **Date Received** Water N. Smith 29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> e taken	Result	(units)	Method Reference	Limit of Reporting
22Jun-0257	YR1-IS 28.06.22					
		Aluminium (dissolved)	< 0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Cyanide	<0.002	mg/L	* APHA 4500-CN E	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1
		Phosphorus, Total	0.02	mg/L	LTM-W-030	0.01
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Total Dissolved Solids	33	mg/L	LTM-W-035	2
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D	0.2
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002

22Jun-0258

CG-IS

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022 **NATA Accredited Laboratory**

Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number: 2206-0100 Page 4 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # **Date Analysis Commenced**

29-June-2022

Sample Type Collected By **Date Received** Water N. Smith 29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> le taken	Result	(units)	Method Reference	Limit of Reporting
22Jun-0258	CG-IS 28.06.22					
		Aluminium (dissolved)	< 0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	< 0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	<0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Cyanide	< 0.002	mg/L	* APHA 4500-CN E	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1
		Phosphorus, Total	0.05	mg/L	LTM-W-030	0.01
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Total Dissolved Solids	266	mg/L	LTM-W-035	2
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D	0.2
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002

22Jun-0259 **LHG-IS**

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Wednesday, September 28, 2022

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number: 2206-0100 **Page 5 of 15**

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # **Date Analysis Commenced**

29-June-2022

Sample Type Collected By **Date Received** Water N. Smith 29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> e taken	Result	(units)	Method Reference	Limit of Reporting
22Jun-0259	LHG-IS 28.06.22					
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Cyanide	< 0.002	mg/L	* APHA 4500-CN E	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	0.1	mg/L	LTM-W-014	0.1
		Phosphorus, Total	0.01	mg/L	LTM-W-030	0.01
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Total Dissolved Solids	294	mg/L	LTM-W-035	2
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D	0.2
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002

22Jun-0260 YR2-IS

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Wednesday, September 28, 2022

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number: 2206-0100 Page 6 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> e taken	Result	(units)	Method Reference	Limit of Reporting			
22Jun-0260	YR2-IS 28.06.22								
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03			
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)				
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002			
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002			
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002			
		Cyanide	<0.002	mg/L	* APHA 4500-CN E	0.002			
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01			
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001			
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)				
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2			
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1			
		Phosphorus, Total	0.02	mg/L	LTM-W-030	0.01			
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002			
		Total Dissolved Solids	38	mg/L	LTM-W-035	2			
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2			
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D	0.2			
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 E				

22Jun-0261 SSC-IS

www.csu.edu.au

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022

NATA Accredited Laboratory

Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 7 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> le taken	Result	(units)	Method Reference	Limit of Reporting		
22Jun-0261	SSC-IS 28.06.22							
		Aluminium (dissolved)	< 0.03	mg/L	APHA 3030 B/3120 B	0.03		
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)			
		Cadmium (dissolved)	< 0.00002	mg/L	APHA 3030 B/3120 B	0.002		
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002		
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002		
		Cyanide	< 0.002	mg/L	* APHA 4500-CN E	0.002		
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01		
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01		
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001		
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)			
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01		
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2		
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1		
		Phosphorus, Total	0.01	mg/L	LTM-W-030	0.01		
		Silver (dissolved)	< 0.00002	mg/L	* APHA 3030 E/3120 B	0.002		
		Total Dissolved Solids	69	mg/L	LTM-W-035	2		
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2		
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D			
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002		

22Jun-0262 TR-RS

28.06.22

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022

NATA Accredited Laboratory Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 8 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID.	<u>Test</u>	Result	(units)	Method Reference	Limit o			
	Date/Time sample	e taken				<u> Keportina</u>			
22Jun-0262	TR-RS 28.06.22								
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03			
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)				
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002			
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002			
		Copper (dissolved)	<0.0002	mg/L	APHA 3030 B/3120 B	0.002			
		Cyanide	<0.002	mg/L	* APHA 4500-CN E	0.002			
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01			
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001			
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)				
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2			
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1			
		Phosphorus, Total	0.01	mg/L	LTM-W-030	0.01			
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002			
		Total Dissolved Solids	7	mg/L	LTM-W-035	2			
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2			
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D				
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002			

22Jun-0263 YK-IS(DIS)

28.06.22

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022

NATA Accredited Laboratory Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number: 2206-0100 Page 9 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID.	<u>Test</u>	Result	(units)	Method Reference	Limit of			
	Date/Time sample	taken		-		Reporting			
22Jun-0263	YK-IS(DIS) 28.06.22								
		Aluminium (dissolved)	< 0.03	mg/L	APHA 3030 B/3120 B	0.03			
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)				
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002			
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002			
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002			
		Cyanide	<0.002	mg/L	* APHA 4500-CN E	0.002			
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01			
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001			
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)				
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2			
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1			
		Phosphorus, Total	0.03	mg/L	LTM-W-030	0.01			
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002			
		Total Dissolved Solids	18	mg/L	LTM-W-035	2			
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2			
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D				
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B				

22Jun-0264 YK-IS

28.06.22

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

NATA Accredited Laboratory Number: 9597

> Accredited for compliance with ISO/IEC 17025 - Testing

Wednesday, September 28, 2022

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number: 2206-0100 Page 10 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # **Date Analysis Commenced**

29-June-2022

Sample Type Collected By **Date Received** Water N. Smith 29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> le taken	Result	(units)	Method Reference	<u>Limit of</u> Reporting
22Jun-0264	YK-IS 28.06.22					
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Cyanide	<0.002	mg/L	* APHA 4500-CN E	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1
		Phosphorus, Total	0.02	mg/L	LTM-W-030	0.01
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Total Dissolved Solids	15	mg/L	LTM-W-035	2
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D	0.2
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002

22Jun-0265 **NZG-IS**

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022

NATA Accredited Laboratory Number: 9597

Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 11 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID. Date/Time samp	<u>Test</u> le taken	Result	(units)	Method Reference	Limit of Reporting		
22Jun-0265	NZG-IS 28.06.22							
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03		
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)			
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002		
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002		
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002		
		Cyanide	<0.002	mg/L	* APHA 4500-CN E	0.002		
		Iron (dissolved)	< 0.01	mg/L	APHA 3030 B/3120 B	0.01		
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01		
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001		
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)			
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01		
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2		
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1		
		Phosphorus, Total	0.03	mg/L	LTM-W-030	0.01		
		Silver (dissolved)	<0.00002	mg/L	* APHA 3030 E/3120 B	0.002		
		Total Dissolved Solids	22	mg/L	LTM-W-035	2		
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2		
		Total Suspended Solids	<0.2	mg/L	APHA 2540 D			
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002		

22Jun-0266 YK-RS

www.csu.edu.au

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

NATA Accredited Laboratory Number: 9597

> Accredited for compliance with ISO/IEC 17025 - Testing

Wednesday, September 28, 2022

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number: 2206-0100 Page 12 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # **Date Analysis Commenced**

29-June-2022

Sample Type Collected By **Date Received** Water N. Smith 29-June-2022

EAL ID	Client ID.	Test	Result	(units)	Method Reference	Limit of			
	Date/Time sampl	e taken				Reporting			
22Jun-0266	YK-RS 28.06.22								
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03			
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)				
		Cadmium (dissolved)	< 0.00002	mg/L	APHA 3030 B/3120 B	0.002			
		Chromium (dissolved)	< 0.00001	mg/L	APHA 3030 B/3120 B	0.002			
		Copper (dissolved)	<0.0002	mg/L	APHA 3030 B/3120 B	0.002			
		Cyanide	< 0.002	mg/L	* APHA 4500-CN E	0.002			
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01			
		Lead (dissolved)	< 0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Manganese (dissolved)	< 0.001	mg/L	APHA 3030 B/3120 B	0.001			
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)				
		Nickel (dissolved)	< 0.001	mg/L	APHA 3030 B/3120 B	0.01			
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B $+$ 4110 B	2			
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1			
		Phosphorus, Total	0.01	mg/L	LTM-W-030	0.01			
		Silver (dissolved)	< 0.00002	mg/L	* APHA 3030 E/3120 B	0.002			
		Total Dissolved Solids	14	mg/L	LTM-W-035	2			
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2			
		Total Suspended Solids	4	mg/L	APHA 2540 D				
		Zinc (dissolved)	< 0.002	mg/L	APHA 3030 B/3120 B	0.002			

22Jun-0267 DUP01

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Wednesday, September 28, 2022

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 13 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> taken	Result	(units)	Method Reference	Limit of Reporting
22Jun-0267	DUP01 28.06.22					
		Aluminium (dissolved)	< 0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	< 0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	< 0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	< 0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Silver (dissolved)	< 0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Zinc (dissolved)	<0.002	mg/L	APHA 3030 B/3120 B	0.002
22Jun-0268	Water Blank 28.06.22					
		Aluminium (dissolved)	<0.03	mg/L	APHA 3030 B/3120 B	0.03
		Arsenic	<0.0003	mg/L	Analysis by Melbourne (acc no: 992)	
		Cadmium (dissolved)	<0.00002	mg/L	APHA 3030 B/3120 B	0.002
		Chromium (dissolved)	<0.00001	mg/L	APHA 3030 B/3120 B	0.002
		Copper (dissolved)	<0.0002	mg/L	APHA 3030 B/3120 B	0.002
		Cyanide	< 0.002	mg/L	* APHA 4500-CN E	0.002
		Iron (dissolved)	<0.01	mg/L	APHA 3030 B/3120 B	0.01

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022

NATA Accredited Laboratory

Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT

This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 14 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

EAL ID	Client ID. Date/Time sample to	<u>Test</u> taken	Result	(units)	Method Reference	Limit of Reporting
22Jun-0268	Water Blank 28.06.22					
		Lead (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Manganese (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.001
		Mercury	<0.00003	mg/L	Analysis by ALS Melbourne (acc no: 992)	
		Nickel (dissolved)	<0.001	mg/L	APHA 3030 B/3120 B	0.01
		Nitrogen, total	<0.2	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	<0.1	mg/L	LTM-W-014	0.1
		Silver (dissolved)	< 0.00002	mg/L	* APHA 3030 E/3120 B	0.002
		Total Kjeldahl Nitrogen	<0.2	mg/L	LTM-W-034	2
		Zinc (dissolved)	<0.002	mg/L	APHA 3030 B/3120 B	0.002

Note:

^{*} NATA Accreditation does not cover the performance of this service.

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

NGH Environmental

Suite 1/39 Fitzmaurice Strret

Wagga Wagga NSW 2650

Attention: Nicole Isles

Wednesday, September 28, 2022

NATA Accredited Laboratory

Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

REPLACEMENT LABORATORY ANALYSIS REPORT This Report Replaces Report Sent on 24/08/2022

Report Number:2206-0100 Page 15 of 15

For all enquiries related to this report please quote document number: 2206-0100

Facility: Order # Date Analysis Commenced

29-June-2022

Sample TypeCollected ByDate ReceivedWaterN. Smith29-June-2022

 EAL ID
 Client ID.
 Test
 Result (units)
 Method Reference
 Limit of Reporting

 Date/Time sample taken
 Reporting

Signed

...... Michael Glazier, Laboratory Manager.

All samples analysed as received.
All soil results are reported on a dry basis.
The EAL takes no responsibility for the end use of results within this report.
This report shall not be reproduced except in full.
This report replaces any previously issued report

Mflir

APPENDIX D RPD TABLE

											Al	As	Cd	Cr	Cu	Cyanide	Fe	Pb	Mn	Hg	Ni	Ag	Zn
		,									(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	Event 1					DUP01					0.03	0.00015	0.00001	0.000005	0.0001	0.001	0.06	0.0005	0.003	0.000015	0.0005	0.00001	0.001
						YR1-IS					0.03	0.00015	0.00001	0.000005	0.0001	0.001	0.06	0.0005	0.003	0.000015	0.0005	0.00001	0.001
		RPD% - Acceptable Range DUP01							0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%		
	Event 2	DUP01 WC-IS						< 0.03	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.001	0.000015	0.0005	0.00001	0.001			
											< 0.03	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.002	0.000015	0.0005	0.00001	0.001
					RPD% - Acc	eptable Rang	je except M	n			0%	0%	0%	0%	0%	0%	0%	0%	67%	0%	0%	0%	0%
	Event 3					DUP01					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
						Yk-IS (D/S					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
					RPD%	 Acceptable 	Range				0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
						DUP01					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
DUP01						WC-RS					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
					RPD%	- Acceptable	Range				0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Event 4	DUP01					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001				
						WC-RS					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
			RPD% - Acceptable Range								0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Event 5	DUP01									0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
						WC-RS					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
					RPD%	- Acceptable	Range				0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Event 6					DUP01					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
						WC-RS					0.015	0.00015	0.00001	0.000005	0.0001	0.001	0.005	0.0005	0.0005	0.000015	0.0005	0.00001	0.001
					RPD%	- Acceptable	Range				0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Event 7																						
	Event 8																						
	Event 1				N	hing above I	00				<0.02	<0.0003	<0.00002	<0.00001	<0.0002	<0.002	<0.01	<0.001	<0.001	<0.00003	<0.001	<0.00002	<0.002
	Event 2										<0.02	<0.0003	<0.00002	<0.00001	<0.0002	<0.002	<0.01	<0.001	<0.001	<0.00003	<0.001	<0.00002	<0.002
	Event 3	-				hing above I																	
later Blan	Event 4					hing above I					<0.03	<0.0003	<0.00002	<0.00001	<0.0002	<0.002 <0.002	<0.01	<0.001	<0.001	<0.00003	<0.001	<0.00002 <0.00002	<0.002
	Event 5				Not	mny above i	.UR		1		NU.U3	<0.0003	<u>~0.00002</u>	<0.00001	NU.0002	<0.002	NO.01	NO.001	NU.001	NO.00003	~ 0.001	NO.00002	NU.002
	Event 6																						
	EVENTO																						

RPD% |(X2 - X1)|/((X2 + X1)/2)

How to calculate the Relative Percent Difference (RPD)

The basic equation $R^{3} \frac{\mathbb{P}[R] - R^{2}}{\mathbb{E}[R] + R^{2}} \times 100,$

where

R1 is sample 1, and

R2 is sample 2.

R1 and R2 are your sample and duplicate values. Basically, this equation has you calculate the RPD by dividing the difference between the sample and duplicate by the average of the two. Using absolute value signs ensures the RPD doesn't end up as a negative percentage, which wouldn't make sense when looking for a percent difference.

The equation you plug into Excel looks like this:

=ABS((B3-C3)/AVERAGE(B3:C3)*100)

ABS stands for Absolute Value. Using the cell labels in the equation, as seen above (83, C3), allows you to use the equation down for all your sample/duplicate pairs so you don't have to write a new equation each time. You can do this by clicking on the cell with the equation in it, then click and drag the bottom right corner of the cell down for the rest of your samples.

APPENDIX E CALIBRATION CERTIFICATES

Multi Parameter Water Meter

Instrument

YSI Quatro Pro Plus

Serial No.

18D102941

Item	Test Charge Condition	Pass	Comments		
Battery					
	Fuses	✓			
	Capacity	✓			
Switch/keypad	Operation	1			
Display	Intensity	✓			
	Operation (segments)	√			
Grill Filter	Condition	✓			
	Seal	✓			
PCB	Condition	✓			
Connectors	Condition	✓			
Sensor	1. pH	✓			
	2. mV	✓			
	3. EC	✓			
	4. D.O	✓			
4	5. Temp	1			
Alarms	Beeper				
	Settings				
Software	Version				
Data logger	Operation				
Download	Operation				
Other tests:					

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
2. pH 7.00		pH 7.00		377339	pH 7.02
3. pH 4.00		pH 4.00		380327	pH 4.01
4. mV		2.39.5mV		380834/378285	238.4mV
5. EC		2.76mS	T.	385047	2.76mS
6. D.O		0.00%		371864	0.00%
7. Temp		20.2		MultiTherm	20.0°C

Calibrated by:

Lebelle Chee

Calibration date:

21/06/2022

Next calibration due:

21/07/2022